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Introduction {1 Y .

The form of the hulls of many undersea craft is approximated by a
closed surface of revolution. This property, together with the numerical
solutions available for elastic shells of revelution, has motivated the
study of these figures in connection with the acoustic radiation problem.
See [1-3]3. Solutions have been given which involve various simplifying
assumptions regarding the nature of the radiated acoustic field. [4-6].
Ref. [4] contains a summary of some of the recent work i1n this arca.

In the following, the scaled acoustic field equations are expressed
in circular cylindrical coordinates and the circumferential coordinate sup-
pressed through a Fourier series expansion. The region external to shell's
generating a curve is mapped conformally onto the region external to the

unit circle. This is tantemount to the construction of an orthogonal

coordinate system which has the shell's generating curve as one of its coor-

dinate lines. The numerical conformal mapping technique utilized is applicable

to infinite regions bounded internally. The region external to the unit
circle is mapped into the region internal to a rectangle. The equation of
motion of the acoustic fluid together with the shell fluid boundary equations
in the transformed coordinate systom is expressed in finite difference form.

The normal shell displacement is introduced through a spectral represent-
P ¥ ¥ i

ation, as a series of the in vacuo shell modes. Integrals occurring in forcing

terms of the expansion which contain the unknown surface acoustic pressur
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Abstract

A numerical solution for the transient vibration of an arbitrary
shell of revolution, surrounded by an acoustic medium, has been formulated

in terms of the conformally mapped acoustic equacions, fluid shell boundary

conditions and spectral representation of the shell displacements. The

.

technique readily includes the boundary condition at infinity, internal

shell structure and is exact to within those approximations implicit in

the finite difference method.
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where T = ct/a, P = p/ofc2 and Pg = fluid density. In (9), the angular
coordinate, Xos mMAy be suppressed through a Fourier expansion of P

©

o} = + 3 )
I(xl,xz,x3,T) 2“ (Pnccos nx, Pn551n nx2) (10)
n=0
For notational simplicity, Pn will be taken, in the following, to represent
either Pnc or P__. For the exterior problem X 2 1. However, for a closed
shell of revolution there exist points on the shell's surface for which

Xl = 0. The corresponding singularities in (9) may be eliminated through

the change of dependeat variable

- 22
e Fn/)s1 (l,x3) (11)

The region external to the unit circle xl = 1 may be mapped intc the interior

of a rectangle through the inversion
y = 1/x, (12)

See [1,2,3]. Substituting (10), (11) and (12) into (9) and taking the

Laplace transform with respect to T, assuming zero initial conditions gives

nD
5%Fn , 3Fn , 3Fn , 3°Fn ) 5
Fo g + ay Ty +a, 5;; + ay 3;;; + a, Fn 0 (13)

where ai = 1/y ~ (DXllaxl)/(yle), aé = (DX1/8x3)/(le2) - 4(3X1(1,x3)/8x3)/
(2% (1,%3))5 a} = 1/y2, a; = (6(3X(1,x,)/8x) /X, (1,%,) = 23X, (1,x4)/8%x )
/(y2Xl(l,xsn - 2(8X1/ax3)(8Xl(l,x3)/3x3)/(y?Xle(l,x3» - (gll/ya)(SP/a: + n:/Xi')
and s is the Laplace transform variable.

An effective method for computation of the coefticients ay occurring in the
mapping tunction (3) is given in [10]. This technique has been applied to
the solution of the cylindrical problem in [7].

Eq. (13) may be expressed in finite difference form by replacing the

spatial derivatives with the following difference expressions:

i e
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= = = = 2.. M — 2fc = 0
F,xxx=x2 Cn(xz)Fn, T 1’3’ Cl 1/6, C2 (G 1)/8 > (.:3 Q /,_. B 1(q+l)h’
hi= x2 i Xl and ch = x3 = xz. For points not adjacent to y = 0, y =1,

X, = 4+u/2 the second derivative was approximated by }’xxix=x2 = An(KZ)Fn‘

n=0,4 where the mesh points are the set {xo,xl,xz,x3,x4}, A; =3 X m=0,4,

= Vol = ¥ - == = % = {4
m # n, Bn (An Dn)/2, Cn L(xn xm), m = 0,4, m # n, Dn XoE s W 0y 4,

- 2_ ' Siis + ¥ S - “or =
m # n, and An(x2) 12 x5 6An X, + ZBn)/Ln For points adjacent to y = 0,
y =1, Xy = +1/2 the second derivative was approximated by F’xxlx=x1= Bn(xl)Fn
n = 0,3 where An =1 X, @= 0,3, m # n, Cn = E(xn-xm), m =053, m # n,

- s A : :
Bn(xl) (6x1 LAn)/Cn and the mesh points consist of the set {xo,xl,xz,x3}.

At a general nodal point y = y,, X, = X,, the finite differerce form of (13)

i 3 3k

is then

+-
N

{

) =0 (14

N

) ' -
(Di+r,k I'5.+1r,k " Di,k+r li,k+r

r==2
where the coefficients of F in (14) are found by substituting the above
difference expressions into (13) and the subscript n has been omitted in the

symbol Fn for the sake of clarity.

Boundary Conditions

At the shell fluid interface, the normal fluid velocity must equal the

normal shell velocity. This implies that
b R £ = ~32y /¢ 2 5y
a(aPn/B THESE alnl,a n) hn/dT (15

where Pn, P and Wn are the coefficients of the Fourier expansions, in

nl
terms of Xo» of the scaled reflected and radiated acoustic pressure, the scaled
tnavmn incident acoustic pressure and the scaled normal shell displacement

respectively. n is an exterior unit vector which is normal to the shell's

surface in the unscaled physical coordinates x,. It mayv be shown, 2,97 that
i ) { j
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3 P k 3P .
T W0 o (16)

9%
k ; : e o
whare n  are the contravarient componeants of the unit vecter n in the

Xy coordinate system. The tensor transformation law implies that

k _ oxe -1 -
n = Bii n (17)

Since n is normazl to a surface of revolution and Xq is cylindrical

it follows that E2 = 0. This and the fact that xl and x2 are only functions

= = 2
of x. and x together with (17), implies that n 0. For covarient com-

1 E3e

ponents (17) becomes

n = —h p (18)

!

For orthogonal coordinates n> = 0 implies that ﬁi = 0 and therefore 52 = 0,

Summing (18) for k = 3 gives n, = (dxl/dx3)n1 + (8x3/ax3)n3. However
_=.. ':‘;‘ = 8 P 2 % )% v B n'y “d= Sl
n VE/(VE | ((”f/axl)gl + (af/8x3)33)/Vf n'g, + n 23 and n s

32 - i, since fi'= ‘g”ﬁj, et e L, Here £(R %y = c

is the equation of the generating curve. Then n, = ((8§l/8x3)(5f/a§l) +

(B§3/8x3)(3f/3;3))47£l= (Bf/BxJ)AGfl= 0 since f(l,x3) = ¢ 1is the equation

of the generating curve in the Xy coordinate system. Then n, = 0 and therefore

i

n~ = 0. Since n is a unit vector it follows from the definition of the

scalar product and the definition of the non-dimensional coordinates Xi that

ik
n n

IRy Y

s 2 3 , ¢ NET
8., = 1/a”. Sipce n” = 0 and n” = 0, it follows that (n) g, = 1 or

ik Ll

1

n = 1/(u~;{{)- Substituting {nto (16) gives
. == (15)

The boundary condition (15) is then




-1 9F AP 32w
— Sin N =
By B2 L,z By " % Bn 312 (20)

where y = 1/xl and Pn is replaced by Fn through (11). The finite difference
form of (20) is obtained by replacing 3F,/dy with the first difference
approximation.

In the rectangle 0 <y <1, =-n/2 < % < n/2, (18) must be satisfied
for y = 1. The boundary at infinity corresponds to y = 0 on which Fn(O,x3) = 0.
Assuming that Xl(l,i.n/Z) = 0, then since Pn(y, + w/2) is bounded, it follows
from (11) that Fn(y, + ©/2) = 0. Given the normal shell displacements, wn,
and the incident acoustic pressure, PnI’ the boundary conditions together with
(10), (11) and (13) determine the reflected and radiated acoustic pressure

over the region external to the cavity defined by the surface of revolction.

Shell Equations

Solutions of the shell's equations of motion may be introduced into the
shell fluid interaction problem either directly through finite difference
approximation as in [2,3] or through a spectral representation as in [6].
Since there exists at present a more comprehensive library of shell programs
which employ spectral representation rather than integration of a finite
different approximation, the following development is based on spectral repre-~
sentation. For notational simplicity U2’ U3, and W will note the coefficients
corresponding to some given value of the summation index for the Fourier

expansions, with respect to the polar angle §2. of the tangential, axial, and

normal shell displacements respectively. Then in terms of generalized coordinates

qn(T) and scaled normal modes U U, and wm

2m’ 3m

=,
W= L q (1) W_ (21)
=1




where

52 2
g 2 -2
dem £ ﬁm Un c? Cm(T) (22)

see [11]. G, (T) is given by

' - e 2.3 7
Gm(I) anfc az PTkm X

1 dXB/Nm (23)

where

% L 2 2 RN ;
Nm 2rpsh at [ (U2m + U4 + wm)xl ax

3m (24)

3

ps = shell density, h = shell thickness, PT =P + PI + Pz where Pz is any
pressure acting on the shell which is not applied through the fluid. For
a given shell geometry the in vacuo scaled normal modes and scaled natural
frequencies @ = awm/c may be found by a variety of means, [11], and are

therefore assumed to be known. The integral c¢f the unknown surface acoustic

pressure, P, in (23) may be apprcximated by

J P Wm 2 DG

) 9%, Hk P(k) wm(k) Xl(k) (25)

-

where P(k) = Pi K ;1 corresponds to the row of nodes for which y = 1,
’

k corresponds to the column number of nodes in the y, x, plane and H are the

3 k
corresponding weights in any suitable numerical quadrature formula. Taking

the Laplace transform of (22), assuming zero initial conditions, gives
s = alc g Bl 4 2 y
qm(-) a Gm( )/ (c(s Qm)) (26)

Equations (10),(11), (14), (21), (25), (26) and boundary conditions are
sufficient to determine the transform of the acoustic pressure P, K over the
1,

regiou external to the shell and on the shell fluid interface together with

the transform of the normal shell deflection. Solutions in the time domain

are found through numerical inversion of the lLaplace transform. Sec []2] and




[13].

Numerical Studies

In order to demonstrate the computational utility of the foregoing,
numerical studies were carried out utilizing a shell of revolution, the
upper right hand quadrant of which is shown in Fig. 2. The scaled dimensicns
of the shell are indicated on the figure together with crosses denoting
the approximation realized by retaining five terms in the mapping function
given by (3). The mid-section of the shell, -1 < Xy £+ 1, is assumed to
be an elastic cylindrical shell with an unscaled radius of 53.34 cm. (21 in),
thickness of 2.54 cm (1 in), density of 7.829 - 103 kg/m® (C.738 - 107° 1b -
sec?/in"*) with a length of 106.68 cm (42 in) for which E = 2.0684 -+ 10!? pa
(30 * 10% psi) and v = 0.3. The cylindrical midsection is assumed to be
pinned at the ends X3 =+ 1, §3

of the shell, k3 | > 1, are taken to be fixed rigid hemispherical caps. The

shell is surrounded by an acoustic fluid for which c = 1.4478 - lO3 m/s

=+ 53.34 cm (+ 21 in). The end sections

&

(0.575 - 105 in/sec) with a density of pe = 0.999 - 10° kg/m3 (0.935 - 10~
1b/sec2/1n4). A suddenly applied scaled force, Pz = cos (rX3/2), acts on

the interior of the cylindrical midsection of the shell. Figure 3 shows the

scaled normal displacement, as a function of scaled time, at the point X3 =0
for the shell surrounded by an acoustic medium and in vacuo. Figures &4 and 5
give results similar to those given in Figure 3 with X = 0.3672¢ and 0.73451
respectively. Due to the symmetry of the loading, only normal modes N“ which
are even functions of x3 and the corresponding U3m occur in (21) and (24).

0f these, it was found necessary to sum only the first two in (21) and (24).

The finite difference grid over the first quadrant of the mapped acoustic

field consisted of 15 equally spaced rows and 8 unequally spaced columns

of nodal points. The rncdal column spacing in the mapped acoustic ficld is




such that the corresponding spacing in the physical plane is uniform.
The resulting system of equations was solved in double precision for the
transforms of the shell displacements. Numerical inversions were car:-ied

out using [12].

Conclusions

A numerical solution for the transient vibration of an arbitrary shell
of revolution, surrounded by an acoustic medium, has been formulated in
terms of the conformally mapped acoustic equations, fluid shell boundary
condition and spectral representation of the normal shell dicplacement.

Numerical mapping techniques have been shown to be effective in this appli-~

cation. The t ue readily includes the boundary condition at infinity
and is exa . those approximations implicit in the finite difference
method. - ired in vacuo normal modes and natural frequencies may

be computed utilizing anyone of the many dynamic shell analysis codes now
available. Thus shell fluid interaction problems for shells with complex
internal structure may be treated.

The present formulation, in terms of the Laplace transform, could be
readily modified so that the time variable is suppressed through a finite
difference technique. Steady state solutions may also be derived through a

modification of the boundary condition at infinity.

Acknowledgements

The computer programming and numerical computations required for the
development of the conformal mapping program were very capably performed
by Mr. Milton Palmer. All computations were carried cut at the University of

Maryland Computer Science Center.

e




il

10.

11.

12.

13.

REFERENCES

B. Bedrosian and F. L. DiMaggio, 'Transient Response of Submerged
Spheriodal Shells," Journal of Sclids and Structures, Vol. 6, 1970,
pp. 333-351.

e )l i s 8

B. S. Berger, '"The Dynamic Response of a Prolate Spheroidal Shell
Submerged in an Acoustical Medium, Journal of Applied Mechanics, ASME,
Vol. 41, No. 4, 1974, pp. 925-929.

B. S. Berger, '"The Dynamic Response of an Elastic Shell of Revolution
Submerged in an Acoustical Medium,'" Journal of Applied Mechanics, ASME
Vol.43, No. 3, Sept. 1976, pp. 514-515.

B. Bedrosian and F. L. DiMaggio, "Acoustic Approximations in Fluid-Shell
Interactions," Journal of Engineering Mechanics, Div. ASCE, June 1972,
pp. 731-742.

T. L. Geers, '"Residual Potential and Approximate Methods for Three-
Dimensional Fluid-Structure Interaction Problems,'" Journal of the
Acoustical Society of America, Vol. 49, No. 5, pp. 1505-1510.

D. Ranlet and M. McCormick, 'Transient Response of Submerged Shells of
Finite Length to Full Envelopment Type Shock Waves,'" ONR Tech. Report,
No. 14, April 1974.

B. S. Berger and M. E. Palmer, "Transient Motion of a Cylindrical Shell
of Arbitrary Crossection in an Acoustic Medium,' ONR Report under
Contract N00014-67-A-0239-0020, October 1976.

J. L. Synge and A. Schild, Tensor Calculus, University of Toronto Press,
1962.

D. Lovelock and H. Rund, Tensors, Differential Forms and Variational
Principles, John Wiley and Sons, New York, 1975.

C. von Kercyek and E. 0. Tuck, "The Representation of Ship Hulls by
Conformal Mapping Functions,'" Journal of Ship Research, Dec. 1969,
pp. 284-298.

H. Kraus, Thin Elastic Shells, John Wiley,Inc., New York, 1967.

B. S. Berjer, "Inversion of the N~Dimensional Laplace Transform," Math.
of Comp. AMS, 1966, pp. 418-421.

B. S. Berger, "The Inversion of the Laplace Transform with Applications
to the Vibrations of Continuous Elastic Bodies,'" Journal of Applied Mechanics,
ASME, Vol. , Series E, 1968, pp. 837-839.







X
3
b

T T RN SNSRI SRrrm—m——.. -



AiN4 NI 7113HS ©
ON2VANI T13HS O3

=

14

|

|

|

|
LN3W30V1dSIa
T13HS

SO



v 'Oid

aind NI 1M3HS ©
ONJVA NI 1113HS O

LN3W3DYIdSIa-
BRES

14




i
-

O_D.._u_Z_JJ.wIm
ONJVA NI T3HS

€0

LIN3W3OVId4SIa
T13HS

"




